鈦合金閥門開發(fā)時的最大課題是耐磨性表面處理技術的開發(fā)。TiN涂層、Mo注射層及Cr噴鍍等表面處理均成本高、且難以長時間維持其耐磨性,不適合大批量生產。最適宜的方法就是氧化處理,即在
鈦中固溶高濃度的氧,其硬度上升,內部得到了較厚的硬化層。氧化處理基本上是在大氣中高溫區(qū)加熱并保溫的單純熱處理。但抗蠕變性能低的Ti-6Al-4V制閥屬通常的退火組織,在處理中因自重易發(fā)生變形??谷渥冃詢?yōu)良的針狀組織為閥的基本組織,但這種組織的延性及疲勞性能較低。因此在β區(qū)加熱后,通過控制各種冷卻條件,防止粗大的α相在晶界析出,就可得到很微細的針狀組織,在確保高延展性及與等軸組織一樣的疲勞性的同時成功控制了氧化處理時的蠕變變形。采用從實際制造過程中閥軸部切出的試樣,評價了其拉伸性能,拉伸性能高達980MPa以上,延伸率也高達12%以上。并確認,即便是針狀組織也得到了不遜色于等軸材的高的疲勞特性。使用中暴露在高溫下的排氣閥使用的代表性合金是Ti-6Al-2Sn-4Zr-2Mo-0.1Si(6242S)。但二輪車較四輪車閥更易長期暴露在高溫區(qū),所以又選用了耐熱性更好的TImetaL1100(Ti-2.7Sn-4Zr-0.4Mo-0.45Si)。該合金在實用鈦合金中是耐熱性最好合金之一,但其耐用溫度約為600℃,而二輪排氣閥則要求要有800℃左右的耐熱性,所以必須選擇最佳的熱處理條件,再探討是否適用。因此在不同的熱處理條件下,評價了在室溫~800℃下的拉伸特性、耐高溫蠕變特性,沖擊特性及疲勞特性,以把握最好的材料特性匹配,并在合適的條件下制作發(fā)動機閥。
施以氧化硬化層以提高閥的耐磨性,但若條件控制得不好,確保的疲勞性能有可能出現極端降低。因此把握最佳的熱處理條件特別重要。因此在670~820℃的溫度范圍施以1~16h的大氣熱處理,在測定表面性狀及表層部硬度分布的同時調查氧化處理條件對疲勞性能的影響。施以最佳熱處理的www.nmware.com在室溫~700℃的溫度范圍,其0.2%屈服強度高于普通鋼制排氣閥材SUH35,在800℃附近兩者基本相同。該合金在800℃下的疲勞性能與SUH35也相同。最擔心的抗高溫蠕變性能也優(yōu)于SUH35。也就是說對該合金處理以適當的熱處理,就可確保閥的各種特性。圖2所示為在不同的溫度下的施以1h氧化處理的試樣的表層硬度分布。圖3所示為在670℃及820℃下不同時間的氧化處理試樣的表層硬度分布。隨著處理溫度的升高,氧在鈦合金內部的擴散距離增長,在更深層就可得到高硬度值。如,在這次試驗條件的溫度范圍內,在最高溫長時間的820℃下,4h氧化處理的試樣約為50μm,在最低溫短時間的670℃,1h處理的試樣硬化厚度約為10μm。在表面生成的氧化蝕刻(Ti02),氧就從這里擴散到基體中,在蝕刻正下方最表層部的硬度無論在哪種條件下施以熱處理其硬度均是相同的。然而在顯微維氏硬度測定可能表層到數μm的深度,在不同的熱處理條件下確認有較大的硬度差。同時在一部分的高溫長時間的氧化處理條件下,氧化硬化層產生了裂紋,這說明氧化處理不合適。
按照上述的順序所得的氧化硬化層厚度與處理條件的關系,在實際生產中按照這個數據制作了施以氧化處理的發(fā)動機閥,并評價了疲勞性能及耐磨性。圖4所示為制作的閥施以重復彎曲應力測定的氧化處理閥的S-N曲線。該試驗方法可參照文獻9。氧化硬化層一增厚,疲勞強度就降低,在670℃處理材中接近未氧化處理的材料則得到了高疲勞強度。在選擇氧化處理條件應考慮耐磨性,在考慮到閥的耐磨壽命與要求疲勞特性時應決定合適的氧化處理條件。